Usher syndrome is the most common genetic cause of combined deafness and blindness. More than 400,000 people are affected by this disorder worldwide. There is currently no cure for Usher syndrome. 

You have the power to change that.

The Usher Syndrome Coalition is working to raise awareness and accelerate research, while providing information and support to impacted individuals and families. We strive to be the most comprehensive resource for the Usher syndrome community, bridging the gap between researchers and families. Learn more and get involved.

GuideStar Gold Participant Badge  GreatNonprofits 2016 Top-Rated Nonprofit Foundation Alliance 

 

The Sanford Health Lorraine Cross Award worth $1 million was established to award game-changers in medicine. The award is not to have people to live forever, but to “live life without suffering.” The winners of the award are Dr. Jean Bennett and Dr. Katherine High of the University of Pennsylvania, pioneers of gene therapy research. The award is in recognition for the improvements in gene therapy that lead to an FDA- approved treatment for Leber’s congenital amaurosis.

What this means for Usher syndrome: This award not only reflects the importance of gene therapy for the treatment of genetic disorders but could accelerate research in Usher syndrome through gene therapy.

The United States Patent & Trademark Office (USPTO) has approved the usage of mesencephalic-astrocyte-derived neurotrophic factor (MANF) or cerebral dopamine neurotropic factor (CDNF) as a treatment for various retinal disorders including retinitis pigmentosa, macular degeneration, or glaucoma. Both factors can be administered as an eye drop or by intravitreal injection. MANF is believed to have potential because it is a naturally-occurring protein produced by the body to reduce or prevent cell death in response to injury or disease through unfolded protein response.

What this means for Usher syndrome: Since MANF reduces or prevents cell death, in the case of Usher syndrome, it could prevent photoreceptor cells from dying, and thus preserve vision.

Join us for our 11th annual USH Connections Conference in Philadelphia, Pennsylvania on July 13, 2019. Attendees describe this conference as "life-changing," an event with a positive atmosphere and a genuine sense of community. At the USH Connections Conference, you will connect face-to-face with hundreds of people who "get it", meet and network with others facing the same challenges, and learn the latest on developing treatments from leading USH researchers.

A new purple protein, bacteriorhodopsin, has made its way from a tiny laboratory in Farmington all the way up to the International Space Station. Since bacteriorhodopsin is light-sensitive, researchers hope to implant it into human eyes. The thought is that the protein could be used to replace cells that die due to diseases like retinitis pigmentosa and age-related macular degeneration. To simulate the cells, the laboratory in Farmington needs to build what it is called “organic implants” by layering the bacteriorhodopsin onto a film and dipping it over and over into a series of solutions. These solutions need to have a uniform distribution that can be adversely affected by gravity. To test this, LambdaVision has secured a spot for their experiment aboard the International Space Station, using funding from the ISS National Lab and Boeing.

What this means for Usher syndrome: These “organic implants”, composed of bacteriorhodopsin, should be capable of replacing dying photoreceptors in the retina.

Powered by Firespring