Learn about the Latest research

Drug-Based Therapy News

Sparing Vision, a French biotech, plans to use a naturally occurring protein called rod-derived cone-viability factor, which binds to a peptide on cone photoreceptor cells in the retina and allows more glucose to enter the cell. By allowing more glucose in, it will slow down or prevent cell death; thus stopping vision loss. This could be beneficial for patients with retinitis pigmentosa.

The nonprofit biomedical institute is seeking to acquire samples of every drug ever developed to see if they can be used to treat diseases besides those for which they were intended. That means collecting roughly 10,000 to 11,000 compounds discovered since the end of the 19th century. Most never made it to market, often because they weren’t effective or had unexpected side effects.

ProQR Therapeutics N.V. announced the results for their clinical trial of QR-110 LCA 10 is on track, and eight out of twelve patients have been enrolled in a Phase 1/2 trial. The results for safety and efficacy for the trial are expected to be announced in the second half of 2018. Currently, they planing to announce data from a QR-421 study for Usher Syndrome. The organization has received $7.5 million in funding from the Foundation Fighting Blindness (FFB) and hopes to use QR-421a for Usher Syndrome Type 2A to target mutations in exon 13.

ReNeuron, a developer of cell-based therapeutics, received a $1.5 million grant award from the UK Innovations agency. The project will allow further development of cell banks of ReNeuron’s hRPC candidate and as well as the development of product release assays for late-stage clinical development. The hRPC therapy is currently being tested in a Phase III clinical trial in the US for patients suffering retinitis pigmentosa.

Caroline C. W. Klaver, MD, PhD; Alberta A. H. J. Thiadens, MD, PhD

Children with retinitis pigmentosa who received vitamin A supplementation were associated with slower rate of cone electroretinogram amplitude compared to children who did not, a small study found.

Rajiv Gandhi Govindaraj, Misagh Naderi, Manali Singha, Jeffrey Lemoine, Michal Brylinski

Researchers at the LSU Computational Systems Biology group have developed a sophisticated and systematic way to identify existing drugs that can be repositioned to treat a rare disease or condition. They have fine-tuned a computer-assisted drug repositioning process that can save time and money in helping these patients receive effective treatment.

Nikolas L. Jorstad, Matthew S. Wilken, William N. Grimes, Stefanie G. Wohl, Leah S. VandenBosch, Takeshi Yoshimatsu, Rachel O. Wong, Fred Rieke, & Thomas A. Reh

NEI-funded researchers use a clue from zebrafish to discover the cues that reprogram Müller glia into retinal neurons.

Sarath Vijayakumar Frederic F. Depreux Francine M. Jodelka Jennifer J. Lentz Frank Rigo Timothy A. Jones Michelle L. Hastings.

These findings provide the first direct evidence of an effective treatment of peripheral vestibular function in a mouse model of USH1C and reveal the potential for using antisense technology to treat vestibular dysfunction.

Harvard Stem Cell Institute (HSCI) researchers at Brigham and Women’s Hospital (BWH) and Massachusetts Eye and Ear Infirmary and colleagues from Massachusetts Institute of Technology (MIT) have developed an approach to replace damaged sound-sensing hair cells, which eventually may lead to therapies for people who live with disabling hearing loss.

Researchers are working to find how fish can regenerate their eyes after they have been injured and if there is a way to make this happen the same way in a human eye.

Scientists from Brigham and Women’s Hospital (BWH), MIT, and Massachusetts Eye and Ear believe they may have found a way to treat hearing loss by regenerating hair cells in the inner ear and hope to begin clinical trials in 18 months.

The Foundation Fighting Blindness Clinical Research Institute (FFB-CRI) has announced an investment of up to $7.5 million to advance the potential therapy into and through a Phase II clinical trial for the usage of N-acetylcysteine-amide (NACA). NACA has recently emerged as a promising drug for Retinitis Pigmentosa because in several FFB-funded lab studies at Johns Hopkins University, it has slowed down retinal degeneration.

Frederic F. Depreux, Lingyan Wang, Han Jiang, Francine M. Jodelka, Robert F. Rosencrans, Frank Rigo, Jennifer J. Lentz, John V. Brigande and Michelle L. Hastings.

ASO delivery to the intra-amniotic cavity modulates neonatal gene expression and may serve as a therapeutic intervention in itself or when paired with a suitable postnatal therapeutic strategy. Further optimization of the method will broaden the potential impact and applicability of this approach.

Kumar N Alagramam, Suhasini R Gopal, Ruishuang Geng, Daniel H-C Chen, Ina Nemet, Richard Lee, Guilian Tian, Masaru Miyagi, Karine F Malagu, Christopher J Lock, William R K Esmieu, Andrew P Owens, Nicola A Lindsay, Krista Ouwehand, Faywell Albertus, David F Fischer, Roland W Bürli, Angus M MacLeod, William E Harte, Krzysztof Palczewski & Yoshikazu Imanishi.

A new study published in Nature Chemical Biology reports the first small molecule targeted therapy for progressive hearing loss in a mouse model of USH3, an USH classified by progressive loss of hearing and vision starting in the first few decades of life along with variable balance disorder.

Rajarshi Ghosh, Wang Likun, Eric S. Wang, B. Gayani K. Perera, Aeid Igbaria, Shuhei Morita, Kris Prado, Maike Thamsen, Deborah Caswell, Hector Macias, Kurt F. Weiberth, Micah J. Gliedt, Marcel V. Alavi, Sanjay B. Hari, Arinjay K. Mitra, Barun Bhhatarai, Stephan C. Schürer, Erik L. Snapp, Douglas B. Gould, Michael S. German, Bradley J. Backes, Dustin J. Maly, Scott A. Oakes, and Feroz R. Papa.

Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress.
New research shows that modifying a particular protein, IRE1, can put off cell death.

Jennifer J Lentz, Francine M Jodelka, Anthony J Hinrich, Kate E McCaffrey, Hamilton E Farris, Matthew J Spalitta, Nicolas G Bazan, Dominik M Duelli, Frank Rigo & Michelle L Hastings

New research shows that hearing and vestibular function can be rescued in a mouse model of Usher 1c using an antisense oligonucleotide.

"Ray of hope for human Usher syndrome patients": Uwe Wolfrum and his colleagues at Johannes Gutenberg University Mainz are increasing our understanding of Usher syndrome.

BioDiem has strengthened the preclinical case for its BDM-E eye disease drug with further positive results from formal studies that will help progress out-licensing opportunities for the drug. BDM-E has received Orphan Drug designation from the United States Food and Drug Administration for the treatment of the inherited degenerative eye disorder, retinitis pigmentosa.

This study, conducted in mice modelling the human disease retinitis pigmentosa, showed that the drug norgestrel could "rescue" light-detecting retinal cells. The synthetic progestin hormone, an active component of the contraceptive "mini-Pill," allowed mice which should have gone blind to retain their sight. A new study is now planned for next year to see if humans experience the same protective effects.

New treatment for nonsense mutations may soon be ready for use in Usher syndrome patients. A molecule known as PTC124 appears to cause the stop signal in a mutated USH1C to be ignored, allowing the protein to be formed normally in cell cultures.

Neurotech announced in Investigative Ophthalmology and Visual Science that their NT-501 implant slowed the loss of photoreceptors in three patients, including one with Usher syndrome type 2.

Jennifer Phillips, Ph.D., reviewed and put together a 'FAQ' on a small observational study of the effects of Valproic Acid, which was published in the summer of 2010 online in the British Journal of Ophthalmology.

QLT091001 is an orally administered synthetic retinoid replacement for 11-cis-retinal, which is a key biochemical component of the visual retinoid cycle, and is under investigation for the treatment of LCA and RP.

Some unexpected effects of lead exposure that may one day help prevent and reverse blindness have been uncovered.

Researchers at Trinity College Dublin have reported the development of a new drug delivery system which has the potential to treat degenerative diseases of the retina, including retinitis pigmentosa.

Neurotech Pharmaceuticals, Inc., today announced that the Company's product candidate, NT-501 demonstrated a strong biologic effect in two Phase 2 clinical trials for retinitis pigmentosa (RP)

Aminoglycocides have shown promising effects in cell cultures and may someday be used to suppress mutations involved in Usher syndrome.