Gene Therapy for Usher Syndrome (and other treatments)

Mark E. Pennesi, MD/PhD Assistant Professor

Paul Casey Translational Clinical Trial Center

Physicians

Dave Wilson, MD Dick Weleber, MD Tim Stout, MD/PhD Mark Pennesi, MD/PhD Alison Skalet, MD/PhD Andy Lauer, MD

Reading Center

Sigrid Button Laura Erker, PhD Edye Parker Peter Steinkemp Ellie Chergarnov Tomy Tan, PhD

Trial Coordinators Maureen McBride, MS

Catie Beattie, MS

Technicians

Darius Liseckas Paula Rauch, BS Melissa Kramer, MS

Statistician Dawn Peters, PhD

<u>Usher Syndrome - History</u>

• First reported by Albrecht Von Graefe in 1858 where he described three brothers with deaf-blindness

Albrecht von Gräfe

Charles Usher

 Scottish Ophthalmologist Charles Usher described 68 patients in 1912 with retinitis pigmentosa and deafness

Retinal Degeneration in Usher Syndrome

Normal Retina

Usher Syndrome

Anatomy of the Eye and Retina

Fig. 1.1. A drawing of a section through the human eye with a schematic enlargement of the retina.

Images from Webvision

Rods and Cones die in inherited retinal degenerations

Hair cells and photoreceptors share specialized cilia

Usher Syndrome - Subtypes

Type I:

- Retinitis Pigmentosa very severe
- Profound congenital deafness (cochlear implants)
- Vestibular dysfunction (balance problems)

Type II:

- Retinitis Pigmentosa moderate to severe
- Severe congenital deafness (hearing aids)

Type III:

- Retinitis Pigmentosa moderate to severe
- Progressive deafness and vestibular dysfunction

Genes Involved in Usher Syndrome

At least 8 genes

At least 3 genes

The Usher Interactome

From Brown et al.

Tools to Study Usher Syndrome

Family History

Autosomal Dominant

Autosomal Recessive

X-Linked Recessive

Fundus Photography

Patient with Type I Usher Syndrome

Short Wavelength Autofluorescence

Patient with Type I Usher Syndrome

15 year old with USH1B from mutations of MYO7A

Importance of OCT for detecting Macular Edema

Healthy Eye

Cystoid Macular Edema in an Usher Patient

Segmentation of Retinal Layers

Lazow, MA, et al. Transition Zones between Healthy and Diseased Retina in Choroideremia (CHM), Stargardt Disease (STGD)Retinitis Pigmentosa (RP). Invest Ophthalmol Vis Sci 2011; 52: 9581

SD-OCT: Outer Retinal Thickness

Normal group AVG	AMD group AVG	
Overall average	Normal (28 Eyes)	AMD (12 Eyes)
Total retinal thickness(µm)	307.6±12.8	271.3±11.2
ORL thickness(µm)	194.5±6.6	175.1±10.1

Adaptive Optics

RTx1 from Imagine Eyes

Individual Cone Photoreceptors

AO image demonstrating normal cone mosaic

Adaptive Optics

Cone Density Map

0 cones/mm²

Full Field Electroretinograms (ERG)

Fig. 2. Simple diagram of the organization of the retina.

Rod-Driven ERG

Cone-Driven ERG

Multifocal Electroretinograms

The mfERG only measures 24 deg!

Multifocal Electroretinograms

Healthy Eye

Usher Syndrome

Octopus Visual Fields

Kinetic Field

OCTOPUS®

EyeSuite™ Kinetic, V2.3.0 OCTOPUS 900, SN 1,152, V 2.2.0 / 2.3.0

Kinetic Perimetry 24yr with USH1B

Faster GATE Algorithm allows 184 points to be sampled and cover entire field

187 pt Grid

Octopus Visual Fields

Abnormal Static Field

Visual Field Modeling in Usher Syndrome

Normal

Usher Syndrome

Combining Structural and Functional Information

Treatments for Retinal Degenerations

- Low Vision Aids
- Micronutrients
- Neuroprotection/Small Molecules
- Transcript Editing (Antisense Oligonucleotides)
 - Cell Based Therapy (Stem Cells)
 - Optogenetics
 - Artificial Retina
 - Gene Therapy

Low Vision Aids

Proper glasses prescription

Night vision goggles

Broad-beam Flashlight

Magnifiers and minifiers

Tablet Devices

Micronutrients and Vitamins

• High dose Vitamin A

Precautions for taking high doses of vitamin A

- Liver Toxicity
- Osteoporosis
- Pregnancy
- contraindicating in some mutations (such as those seen in Stargardt Disease)

• DHA (docasohexanoic acid)

- Lutein
- ? ß-carotene

• AVOID: Vitamin E, Smoking

Neuroprotection

www.medgadget.com

Ciliary Neurotrophic Factor (CNTF)

Results of clinical trials have not been impressive

What is a Stem Cell?

Totipotent
Unlimited capacity to divide
Can become any other tissue

Pluripotent

•

Unlimited capacity to divide

Can become a subset of tissues

How stem cells might work...

Differentiate in Retinal Tissue

Image from Eriraku et al. 2011

Current Stem Cell Trials

<u>Sponsor</u>	Cell Derivation	Differentiation	Delivery	<u>Disease</u>	<u>Sites</u>
ACT	Embyronic	RPE	subretinal	Stargardt	UCLA, Bascom, Wills, MEEI, Moorfields, Korea
ACT	Embyronic	RPE	subretinal	AMD	UCLA, Bascom, Wills, MEEI, Korea
Pfizer	Embyronic	RPE	subretinal scaffold	AMD	UCL
Stem Cells Inc.	CNS		subretinal	AMD	RFSW
	Bone Marrow		intravitreal	RP, AMD	Univ. Sao Paulo
	Bone Marrow		intravitreal	RP	Madihol Univ (Thailand)
	Bone Marrow	CD34+	intravitreal	RP, DM, AMD	UC Davis

How to build a new retina

Self-Formation of Optic Cups and Storable Stratified Neural Retina from Human ESCs

Tokushige Nakano,^{1,2,4,5} Satoshi Ando,^{1,2,4} Nozomu Takata,¹ Masako Kawada,¹ Keiko Muguruma,¹ Kiyotoshi Sekiguchi, Koichi Saito,⁴ Shigenobu Yonemura,³ Mototsugu Eiraku,^{1,2} and Yoshiki Sasai^{1,2,5,*} ¹Organogenesis and Neurogenesis Group ²Division of Human Stem Cell Technology ³Electron Microscopy Laboratory RIKEN Center for Developmental Biology, Kobe 650-0047, Japan ⁴Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan ⁵Department of Medical Embryology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan ⁶Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita 565-0871, Japan *Correspondence: yoshikisasai@cdb.riken.jp

hESC grown in 3D Matrigel with SFEBq media

FACS for RX:Venus positive cells

A Novel Approach for Subretinal Implantation of Ultrathin Substrates Containing Stem Cell-Derived Retinal Pigment Epithelium Monolayer

Yuntao Hu^{a, e} Laura Liu^{a, f} Bo Lu^c Danhong Zhu^{a, b} Ramiro Ribeiro^{a, g} Bruno Diniz^{a, h} Padmaja B. Thomas^a Ashish K. Ahuja^a David R. Hinton^{a, b} Yu-Chong Tai^c Sherry T. Hikita^d Lincoln V. Johnson^d Dennis O. Clegg^d Biju B. Thomas^a Mark S. Humayun^a

Ophthalmic Res 2012;48:186–191

Fig. 1. Diagrammatic sketch of the implantation tool. The device consists of a thin parylene plate (A) containing barriers (B) arranged in the form of a 'U'. The substrate for implantation is placed in the middle of the U-shaped area (substrate chamber).

Fig. 2. The ultrathin substrate containing hESC-RPE cells. Images were taken before (a) and after (b) subretinal implantation. b Considerable cell loss can be observed along the edges of the substrate (arrows).

4-μm-thick parylene substrates containing a monolayer of human embryonic stem cell-derived RPE

Implantable Retinal Silicon Chips

AP Photo/Martin Cleaver

Argus II Retinal Implant

Gene Therapy

What is gene therapy?

<u>Normal</u>

DNA

Protein

Cells

Gene Therapy Approach

Replace missing protein

Decrease bad protein

Mutant Protein

How to Deliver Gene Therapy?

• Vector – a mechanism to deliver DNA to a cell

Bare DNA

Modified Virus

2255

Nanoparticles

Gene Therapy

Gene Therapy - Subretinal Injection

Recovery of Subretinal Bleb

• Immediately after injection

Bleb resorbed

Gene Therapy Trials at Casey Eye Institute

<u>Current</u>

- Leber Congenital Amaurosis Type 2 (RPE65)
- Stargardt Disease (ABCA4)
- Usher Syndrome Type 1B (MYO7A)
- Retinostat (Endostatin/Angiostatin for NVAMD)

Future/Planned Trials

- X-Linked Retinoschisis (RS1)
- Achromatopsia (CNGB3)

Gene Therapy Trials at Other Centers

- LCA (RPE65) University of Pennsylvania, CHOP, Moorfields, Israel
- Choroideremia (*REP1*) University of Oxford
- Retinitis Pigmentosa (*MERTK*) King Khalid Eye Specialist Hospital

UshStat (For Type 1B Usher Syndrome)

Type 1B Usher Syndrome

Genetic Defect

- Autosomal Recessive
- Mutations in MYO7A

Clinical Features

- Severe Early Onset Rod-cone dystrophy
- Severe Congenital Deafness
- Balance problems

<u>Usher Syndrome – Type 1B</u>

61 yr Female, Va = 20/40 OU Severe Deafness

<u>Usher Syndrome – Type 1B</u>

61 yr Female, Va = 20/40 OU

A Phase I/IIa Dose Escalation Safety Study of Subretinally Injected USHStat[™], Administered to Patients with Usher Syndrome Type 1B

Sponsor: Oxford Biomedica UK / Sanofi

Primary Investigator: Richard Weleber MD

Design: Phase I/IIa dose escalation study

Sites: Casey Eye Institute, OHSU Hospitalier Nationale d'Ophthalmologie des Quinze-Vingts

Vector: non-primate lentiviral vector based on EIAV

Delivery: Subretinal injection

Based on Equine Infectious Anemia Virus (EIAV)

- Wild-type virus causes transient anemia in horses, non-pathogenic in humans
- Ushstattm vector contains <10% of original viral genome
- Non-replicating, but does integrate

Safety/Transfection Studies in Non-human Primates

- Minimal inflammation
- Low risk for insertional mutagenesis

<u>Ushstat – Study Design</u>

18 Patients Total

Ushstat Inclusion Criteria

****All Patients:** Two confirmed MYO7A mutations

Cohorts 1, 2, 3

- <u>></u>18 years
- Constriction of Kinetic Visual Field that meets criteria for legal blindness
- No detectable rod ERG

<u>Cohort 4</u>

- <u>>18 years</u>
- Kinetic Visual Loss ≥30% reduction sensitivity volume
- Evidence of severe rod/cone dysfunction on ERG

Cohort 5

- <u>></u>6 years
- Kinetic Visual Loss ≥30% reduction sensitivity volume
- Evidence of severe rod/cone dysfunction on ERG

Ushstat Endpoints

Primary – Safety

- Visual Acuity
- Examination
- Static and Kinetic Visual Field
- OCT
- Laboratory Parameters

Secondary – Efficacy

- BCVA
- Kinetic and Static Perimetry
- ERG
- OCT
- Adaptive Optics

Recruitment

- First patient dosed April 17, 2012
- Second patient dosed June 28, 2012
- Third patient dosed Oct 4, 2012
- Fourth patient dosed February 16, 2013
- Fifth patient planned, but trial currently on hold

<u>Ushstat – Study Design</u>

- 4 patients treated (3 from Cohort 1, 1 from Cohort 2
- No serious adverse events

Conclusions

 Multiple gene therapy trials are underway with more planned

• Preliminary safety reports are encouraging

Oregon Retinal Degeneration Center at the Casey Eye Institute

Grant Support

- Hear See Hope
- NIH/NEI 1 K08 EY021186-01
- Foundation Fighting Blindness CDA
- Research to Prevent Blindness CDA
- Research to Prevent Blindness

 Unrestricted grant to CEI
- Foundation Fighting Blindness Center Grant

Physicians/Scientists

Dave Wilson, MD Richard Weleber, MD Tim Stout, MD/PhD Alison, Skalet, MD/PhD John Chiang, PhD

Research Administrator Laura Erker, PhD

<u>Genetic Counselors</u> Rebecca Clark, MS Catie Beattie, MS, CGC

ERG Technicians Melissa Krahmer, MS Paula Rauch, BS

<u>Study Coordinator</u> Maureen Toomey, BS Catie Beattie, MS, CGC

Technicians Ellie Chegarnov Darius Liseckas

<u>Administrative</u> Jacqueline Holodak Carolyn Weleber

Lab Technicians Anastasiya Maricle, MS Keith Michaels, BS

Collaborators

AGTC Jeff Chulay, Bill Hauswirth, PhD

Oxford Biomedica Stuart Naylor, Scott Ellis

<u>Hospitalier d'Ophthalmologie</u> <u>des Quinze-Vingts</u> Jose Sahel, MD