Antisense Technology for the Treatment of Usher Syndrome

Michelle L. Hastings, PhD

Rosalind Franklin University of Medicine and Science Chicago Medical School

> July 15th, 2017 USH Connections Conference Chicago, IL

Louisiana State University Health Sciences

Jennifer J. Lentz Abhilash Ponnath Russell Amato Christopher M. Tran Robert Rosencrans

Ionis Pharmaceuticals

Frank Rigo

Oregon Health & Science University

John V. Brigande Lingyan Wang Han Jiang **University of Nebraska-Lincoln** Timothy A. Jones Sarath Vijayakumar

Northern Illinois University

Douglas G. Wallace Tia N. Donaldson

Harvard Medical School Gwenaëlle Géléoc

What is Gene Expression?

A process by which information from a gene is used in the synthesis of a functional gene product. These products are often proteins or functional RNA.

DNA

RNA

Protein

Gene Expression

<u>Antisense</u> <u>O</u>ligonucleotides (ASOs)

Antisense Oligonucleotides as Drugs

- Size small, 15-30 nucleotides
- Specificity high (base-pairing)
- Stability high (low clearance; long-lasting)
- Toxicity low, especially for targeted delivery
- Deliverability free uptake to many cell types

VIRAL DELIVERY NOT REQUIRED OR NECESSARY

FDA Approved Antisense Drugs Targeting Splicing

DUCHENNE IMPACTS:

What is it?

DUCHENNE IS A PROGRESSIVE, MUSCLE-WASTING DISEASE. It results from a defective gene responsible for producing the key muscle protein, dystrophin. Without dystrophin, cells easily become damaged and die, resulting in heart and breathing failure.

EXONDYS 51[™] (eteplirsen) Injection 100 mg/2 mL (50 mg/mL) Single Dose. Mfg for: Sarepta Therapeutics, Inc. Cambridge, MA 02142 USA

920-08846 Lot 0000000 EXP MMM YYYY

Spinal Muscular Atrophy

Spinal Muscular Atrophy (SMA) is the #1 genetic killer of children under the age of two. SMA is a devastating and relatively common children's genetic disease.

NDC 64406-058-01

Spinraza[™] (nusinersen) Injection

12 mg /5 mL (2.4 mg/mL)

Sterile solution for Intrathecal Injection Only

FDA-approved Antisense Drugs for the Eye

Usher syndromes

Туре	Presentation	Locus	Gene	Protein	Function
USH1		USH1B	ΜΥΟ7Α	Myosin VIIa	Actin binding, molecular motor
	\langle	USH1C	USH1C	Harmonin	Scaffolding
	Severe-Profound, Congenital Hearing Impairment (HI)	USH1D	CDH23	Cadherin-23	Cell adhesion
		USH1E	Unknown		
	Adolescent-onset Retinitis Pigmentosa (RP) Vestibular areflexia	USH1F	PCDH15	Protocadherin-15	Cell adhesion, polarity
		USH1G	USH1G	Sans	Scaffolding
		USH1H	Unknown		
		USH1J	CIB2	Calcium and intergin binding protein 2	Calcium binding
		USH1K	Unknown		
USH2	Mild-moderate, Congenital HI Adult-onset RP Normal vestibular responses	USH2A	USH2A	Usherin	Cell adhesion
		USH2C	GPR98	G protein-coupled receptor 98	Signaling
		USH2D	DFNB31	Whirlin	Scaffolding
USH3	Post-lingual, progressive HI Late-onset RP Variable Vestibular	USH3A	CLRN1	Clarin-1	Scaffolding and adhesion
		USH3C	HARS		

USH1C c.216G>A

• USH1C codes for the ubiquitously expressed, scaffold protein, Harmonin.

 The USH1C c.216G>A mutation accounts for nearly all cases of type 1 Usher in the Acadian population in Canada and Louisiana. How Does the USH1C c.216G>A Mutation Disrupt Gene Expression and Cause Usher Syndrome?

USH1C c.216G>A Mutation Disrupts Gene Expression

USH1C gene

USH1C mRNA

Harmonin protein

USH1C/Harmonin 216G>A mutation

Harmonin and Hearing

Harmonin / USH1C

Kazmierczak and Müller (2012) Trends in Neurosciences, 35: 220-229 (2012)

Harmonin and Balance

Stereocilia of the Vestibular System

Theoretical and Computational Biophysics Group Beckman Institute University of Illinois at Urbana-Champaign

Correction of Ush1c G216A Splicing with Antisense Oligonucleotides

Ush1c^{216AA} Mouse Model: Knock-in of Human Mutation

Severe Vestibular Dysfunction

Hearing Impaired

Visual Deficits

Lentz et al., 2007, 2010

Treatment Strategy

• Treated mice 3-16 days after birth (P3-16)

Single intraperitoneal injection (IP)

Avraham, N Engl J Med. 2013 O369:1758-60

ASO Treats Usher Symptoms in Mice

Non-disease mouse ASO-Control

Usher syndrome mouse ASO-Control

A Single Dose of ASO Cures Balance Deficits

ASO-USH Rescues Hearing (Auditory-Evoked Response)

Jennifer J. Lentz

Het/WT

66

54

48

42

ASO Rescues Hearing for up to 6 months

6 months old

Challenge

Hearing in Humans Develops *in Utero*, Early in Gestation.

In Utero, Intra-amniotic Delivery of Antisense Oligonucleotides

Delivery of ASO-USH to the Amniotic Cavity as Efficient as Direct Injection to Newborn

Harmonin Function in the Eye: Photoreceptor Maintenance

Intravitreal Eye Injections

SUMMARY

- ASOs target the cochlea, vestibule and retina, making them a good drug platform for treatment of conditions affecting these systems.
- One dose of ASO early in life rescues balance and hearing for more than 6 months in mice.
- *In utero* treatment with ASOs can be achieved via injection to the amniotic cavity.
- ASOs preserve visual function in Usher mice

The Future

 ASO Treatments for Additional Forms/Causes of Hearing Loss

• ASO Treatment Optimization

 ASO-29 Therapeutic Discovery and Development

Acknowledgements

Chicago Medical School at Rosalind Franklin University

- Frederic Depreux
- Jennifer Chang
- Jessica Centa
- Wren Micheals
- Tiffany Chairuden
- Paul John
- Reyna Ruiz
- Fiona Nugent
- Mallory Havens
- Mallory Birney

Louisiana State University of Health Sciences

Jennifer Lentz

University of Nebraska

Timothy Jones

Oregon Health Sciences University

John Brigande

Ionis Pharmaceuticals

Frank Rigo

Harvard Medical School

Gwen Geleoc

Support

- National Institutes of Health/ NIDCD
- National Institutes of Health/ NINDS
- Foundation Fighting Blindness
- Hearing Health Foundation
- National Organization for Hearing Research Foundation
- Midwest Eye Banks
- Capita Foundation