Gene and Stem Cell Therapy for Usher Syndrome

Ian C. Han, MD

Assistant Professor

University of Iowa Health Care

Wynn Institute for Vision Research Department of Ophthalmology and Visual Sciences 9th Annual USH Connections Conference | July 15, 2017

Financial Disclosures

NONE

Objective

 Describe the treatment strategy for curing vision loss from Usher syndrome

Outline

- Basic eye anatomy
- Basic cell biology
- Treatment based on disease severity
- Gene therapy
- Stem cell therapy
- Surgery to deliver genes and stem cells

Why do photoreceptors degenerate?

Genetic variants

The best treatment strategy for Usher syndrome depends on the severity of disease

Disease Course

Mild

Moderate

Severe

Gene Therapy

Gene Therapy

- Replace or correct the gene variant
- Requires viable cells to make the gene product (proteins)
- Several ways to deliver gene therapy

104 Genes

- 75% have cDNAs that will fit into AAV (less than ~5Kb)
- The remainder will fit into HDAd (~35Kb)

Usher Genes

USH#		Clinical		
	G			
Nomenclature	Gene	Туре	Protein	cDNA Size
Usher Type 1				
USH1B	MYO7A	USH Type 1	Myocin 7A	6,645
USH1C	USH1C	USH Type 1	Harmonin	2,697
USH1D	CDH23	USH Type 1	Cadherin-Like 23	10,062
USH1F	PCDH15	USH Type 1	Protocadherin 15	5,871
USH1G	USH1G	USH Type 1	Scaffold Protein Containing Ankyrin Repeats and SAM Domain	1,683
USH1J	CIB2	USH Type 1	Calcium and Iintegrin Binding Family Member 2	561
Usher Type 2				
USH2A	USH2A	USH Type 2	Usherin	15,606
USH2C	GPR98	USH Type 2	Monogenic Audiogenic Seizure Susceptibility 1 Homolog	18,918
USH2D	DFNB31	USH Type 2	Whirlin	2,721
Usher Type 3				
USH3A	CLRN1	USH Type 3	Clarin-1	735
USH3B	HARS	USH Type 3	Histidyl-tRNA Synthetase	1,527
N/A	ABHD12	USH Type 3-Like	Abhydrolase Domain Containing Protein 12	1,212

HDAd can solve the large gene problem

- USH2A is the second most common inherited retinal disease gene
- 92% of Usher is caused by genes that won't fit into AAV (e.g. MYO7A, USH2A, PCDH15, CDH23)

Progress in Gene Therapy for Usher syndrome at the WIVR

- We have manufactured every known Usher gene
- We are currently testing these gene products in cell, tissue, and animal models
- We are testing HDAd gene delivery

Human Retinal Organ Culture

What is involved in testing a gene before human clinical studies?

What is involved in testing a gene before human clinical studies?

 FDA regulations to ensure that genes are safe before it reaches a human eye

Multiple New Studies at the WIVR Per Year

- We can package one product per month in the cGMP facility
- We can re-use the FDA IND documents (each trial is very similar in rationale and design)
- The rate limiting steps are now generating pre-clinical data and conducting the clinical trials themselves

Steven W. Dezii Research Facility

Good Manufacturing Practices, Open-source, Non-profit, FDA-registered

What about treatment for more severe disease?

Disease Course

Mild

Moderate

Severe

Stem Cell Therapy

What are stem cells?

- Multipotent, undifferentiated cells
- Can be directed to change into specific cells in the body
a Human embryonic stem cells

Three Key Strategic Decisions

- Autologous cells or not
- Polymer supported or not
- Blind or sighted eyes

Our Strategic Decisions

- Autologous cells
- Polymer supported
- Blind eyes

Induced Pluripotent Stem Cells

- iPSCs can be used to create very authentic photoreceptor precursor cells suitable for autologous transplantation, BUT . . .
- They still harbor the mutation(s) that caused the disease in the first place
- Fortunately, CRISPR/CAS9 genome editing can be used to correct the mutations in the iPSCs before differentiating them into retinal cells

Skin fibroblasts (from 3mm punch biopsy)

GMP cell lines have been generated from 35 patients with severe visual loss

Skin fibroblasts (from 3mm punch biopsy)

Pluripotency Factors

Skin fibroblasts (from 3mm punch biopsy)

Pluripotency Factors

Skin fibroblasts (from 3mm punch biopsy)

IPSCs

3D Differentiation

Our Strategic Decisions

- Autologous cells
- Polymer supported
- Blind eyes

Why Polymer Supported?

 Cells with a scaffold of support have upwards of 50 fold higher rate of survival than non-supported cells

3D-Printed Cell Delivery Scaffolds

1.0kV 11.0mm x4.00k 4/4/2016 09:11

How do we delivery gene and stem cell therapy?

Modern retinal surgery techniques

Vitrectomy surgery

Microscope

Instruments

Surgery for gene therapy

Video courtesy Steve Russell, MD

Surgery for stem cell therapy

 How do we deliver the polymer and stem cells under the center of the retina?

Loading the polymer

Video courtesy Elliott Sohn, MD

5 mm polymer under a pig retina

OCT scan of a polymer transplanted in a pig model of retinitis pigmentosa

Microscopic Sections of 3D polymer

Summary of our treatment strategy

Disease Course

Mild

Moderate

Severe

Acknowledgements Ed Stone, Budd Tucker, Rob Mullins, Luke Wiley, Elliott Sohn, Steve Russell

Stephen A. Wynn Institute for Vision Research

Chunhua Jiao

Emily Kaalberg

Elliott Sohn