MAYO CLINIC

Using Zebrafish to Develop the First Pharmacotherapy for the Treatment of Hearing Loss Caused by Usher Syndrome Type I due to Variants in MYO7A

Alaa Koleilat, Ph.D.

USH Connections Week 2020

Usher Syndrome

	Туре	Hearing Impairment	Onset of Hearing Loss	Vestibular Impairment	Vision Loss	Genes
	I	Severe to profound hearing loss	At birth	Severe (E.g. walk at a later age, etc.)	Onset in the first decade of life	MYO7A USH1C CDH23 PCDH15 SANS/USH
		Moderate to severe hearing loss	At birth	none	Onset in first to second decade of life	USH2A VLGR1 WHRN
MAY(CLINI		Variable, progressive hearing loss	Adolescenc e	Variable	Variable	CLRN1 HARS
Ţ	Noiellat et al.					

MYO7A and the inner ear hair cell

Zebrafish as Model Organism to Study Human Disease

- Availability of a zebrafish genome
- Ease of gene editing to model human diseases
- Produce hundreds of embryos in one day
- Ease of administering drugs

Bill et al. 2009 Zebrafish

©2016 MFMER | slide-4

Zebrafish as Model Organism to Study Genetic Hearing Loss

- Acoustic startle response present at 5 days post fertilization
- External sensory organ → lateral line

Harris et al. 2003 JARO

Neuron, Vol. 20, 271-283, February, 1998, Copyright #1998 by Cell Press

Genetic Analysis of Vertebrate Sensory Hair Cell Mechanosensation: the Zebrafish Circler Mutants

Teresa Nicolson,*# Alfons Rüsch,‡ Rainer W. Friedrich,† Michael Granato,*I Johann Peter Ruppersberg,‡§ and Christiane Nüsslein-Volhard*

Table 1. Mutations Affecting Larval Vestibular Function

Gene	Abbreviatio
sputnik	spu
mariner	mar
orbiter	orb
mercury	mrc
gemini	gem
skylab	skb
astronaut	asn
cosmonaut	csm

Neuron, Vol. 20, 271–283, February, 1998, Copyright ♥1998 by Cell Press

Genetic Analysis of Vertebrate Sensory Hair Cell Mechanosensation: the Zebrafish Circler Mutants

Teresa Nicolson,*# Alfons Rüsch,‡ Rainer W. Friedrich,† Michael Granato,*I Johann Peter Ruppersberg,‡§ and Christiane Nüsslein-Volhard*

Table 2. Summary of the phenotypes of the vestibularmutants

Strain	Allele	Hair cell morphology	Acoustic vibrational sensitivity	Startle reflex Ca ²⁺ signal (%)
wildtype		Normal	Present	100 ± 56
mariner (mar)	tc320b	Bundle defect	Absent	9 ± 8

Mariner is defective in myosin VIIA: a zebrafish model for human hereditary deafness

Sylvain Ernest, Gerd-Jörg Rauch¹, Pascal Haffter¹, Robert Geisler¹, Christine Petit and Teresa Nicolson²⁺

myo7aa^{-/-} mutant zebrafish have comparable ribbon area, but fewer glutamatergic vesicles

wildtype

myo7aa⁻⁄-

Koleilat et al. Under Review

MAYO CLINIC

myo7aa^{-/-} mutant zebrafish have different distribution of CTBP2 puncta

wildtype

Koleilat et al. Under Review

MAYO CLINIC

Quantification of behavior between the wildtype and *myo7aa*-/- mutant

wildtype

Koleilat et al. Under Review

myo7aa^{-/-} mutant zebrafish have larger turning angles

Turning Angle (myo7aa-/-

Can modulating the Ca_v1.3a channel using drugs provide a therapeutic effect in the *myo7aa*^{-/-} mutant zebrafish?

L-type voltage gated calcium channel agonists tested in this study:

(R)-Baclofen increases ribbon area and number of tethered vesicles in *myo7aa*-/mutant zebrafish

wildtypemyo7aa-/-myo7aa-/-myo7aa-/-myo7aa-/-untreated(±)-Bay K 8644Nefiracetam(R)-Baclofen

Koleilat et al. Under Review

(R)-Baclofen increases ribbon area in *myo7aa*-/- mutant zebrafish

(R)-Baclofen increases number of tethered vesicles in *myo7aa*^{-/-} mutant zebrafish

MAYO

LINIC

©2016 MFMER | slide-19

L-type voltage-gated calcium channel agonists alter CTBP2 distribution in *myo7aa^{-/-}* mutant zebrafish

©2016 MFMER | slide-20

L-type voltage-gated calcium channel agonists decrease turning angle in *myo7aa*-/- mutant zebrafish

L-type voltage-gated calcium channel agonists decrease turning angle in *myo7aa*-/- mutant zebrafish

L-type voltage-gated calcium channel agonists decrease turning angle in *myo7aa*-/- mutant zebrafish

Koleilat et al. Under Review

myo7aa^{-/-} Nefiracetam

myo7aa⁻/-(R)-Baclofen

Koleilat et al. Under Review

L-type voltage-gated calcium channel agonists increase acoustic startle response in *myo7aa*-/- mutant zebrafish

Summary and Conclusions

- myo7aa^{-/-} mutants have a different synaptic morphology:
 - decreased number of vesicles tethered to ribeye
 - decreased number of ribbon containing cells
 - decreased total CTBP2 puncta per neuromast
 - different distribution of CTBP2 puncta
- myo7aa^{-/-} mutants have larger turning angles as part of their swimming behavior

Summary and Conclusions

- Behavioral and synaptic morphological differences can be modified by drugs with L-type voltage-gated calcium channel activity
 - (R)-Baclofen increases ribbon area and number of tethered vesicles
 - L-type voltage-gated calcium channel agonists shift distribution of CTBP2 puncta to more closely resemble wildtype
 - L-type voltage-gated calcium channel agonists decrease turning angles in swimming behavior and increase acoustic startle response

Future Directions

- Identify exact mechanism of action of Nefiracetam and (R)-Baclofen
- Assess calcium signal in hair cells with and without L-type voltage-gated calcium channel agonists

Future Directions

 Move to the mouse model of USH1 (shaker-1) and assess hearing thresholds through auditory brainstem responses upon injection with L-type voltage-gated calcium channel agonists.

Translational Research

Blumberg et al. 2012 Nat. Med

Acknowledgements

Schimmenti Laboratory- Mayo Clinic Dr. Lisa Schimmenti, M.D. Joseph Dugdale

<u>Ekker Laboratory-Mayo Clinic</u> Dr. Stephen Ekker, Ph.D. Gabriel Martínez Gálvez, Ph.D. Candidate

Masino Laboratory-University of Minnesota Dr. Mark Masino, Ph.D. Dr. Aaron Lambert, Ph.D. Dr. Timothy Wiggins, Ph.D.

Clark Laboratory- Mayo Clinic Dr. Han Lee, Ph.D. Mayo Clinic Microscopy and Cell Analysis <u>Core</u> Dr. Jeffrey Salisbury Trace Christensen Adam Jaspersen

Mayo Clinic Media Services Mark Curry Patrick Jochim

<u>Columbia University</u> Jeff Bellah, Ph.D. Candidate

University of Minnesota and Mayo Clinic zebrafish core facility and staff members

CTSA Grant Number UL1 TR000135 from the National Center for Advancing Translational Sciences (NCATS), a component of the National Institutes of Health (NIH).

