

 \cdot 10 USH causing genes are identified, so far.

H	Human Usher syndrome (USH), genes					
Туре	Gene locus	Gene	Protein	Function	Mouse model	
$1\mathbf{A} = 1\mathbf{B}$						
1B	11q13.5	MYO7A	myosin VIIa	molecular motor	Shaker-1 (sh1)	
1C	11q15.1	USH1C	harmonin	scaffold protein	Deaf circler (dfcr)	
1D	10q21-q22	CDH23	cadherin 23	cell-cell adhesion	Waltzer (v)	
1E	21q21					
1F	10q11.2-q21	PCDH15	protocadherin 15	cell-cell adhesion	Ames waltzer (av)	
1G	17q24-25	SANS	SANS	scaffold protein	Jackson shaker (js)	
1H	15q22-23	USH1H				
2A	1q41	USH2A	USH2A (usherin)	ECM, cell adhesion	k.o.	
2C	5q14.3-21.3	VLGR1b	GPR98/VLGR1b	GPCR, cell adhesion	Mass1 (frings)	
2D	9q32	DFNB31	whirlin	scaffold protein	Whirler (wi); k.o.	
2E	10q24.3	PDZD7	PDZD7	scaffold protein		
3A	3q21-25	USH3A	clarin-1	cell adhesion	k.o. in prep.	
3B	20q					
UW 2009			n	nodified from Reiners et	al. 2006 ExpEyeRes	

Conclusions

USH protein networks are integrated and linked to the cytoskeleton by the USH scaffold proteins: harmonin, whirlin and SANS.

In the ear, USH networks participate in kinocilia/stereocilia differentiation during hair cell

development, but also in ribbon synapse function, and in signal transduction.

In photoreceptor cells, USH networks are found at the synapse and in the ciliary region. They may contribute to the intracellular transport and to the ciliary import and delivery.

Defects in one protein of these networks may cause dysfunction of the entire networks leading to USH.

Gene addition - replacement

Viral gene addition - replacement:

Lentivirus:

- single stranded RNA-Virus, member of Retrovirus family,
- maximum insert size: 7.5 kb,
- integration into genome, long term expression,
- · low immune response, infect both dividing and non-dividing cells
- Adeno-associated virus (AAV):
- DNA virus, belongs to Parvovirus family, maximum insert size: 7 kb;
- no/low rate integration (preferentially chromosome 19) into genome;
- · long term expression, non pathogenic, no immune response;
- infect both dividing and non-dividing cells; depend on a helper virus to replicate (Dependovirus)
- Non-viral gene addition replacement by nanoparticle:
- unlimited size for delivery, very poor integration,
 no immunological problems; expression termination ?
- · low efficiency in transfection of both dividing and non-dividing cells • alternative "carriers": liposomes, DNA-protein conjugates

Gene addition - replacement

Vector	Host cells/ efficiency	Gene expression	Integration into genome	Immune- response
Viral				
Lenti- virus	dividing and non-dividing cells/ high efficiency	long term/ years	yes	low
rAVV	dividing and non-dividing cells/ high efficiency	long term/ years	no/? under discussion	no
Non-viral				
DNA only	dividing and non-dividing cells very low efficiency	short term	no	no
PEG nano- particle	dividing and non-dividing cells/ high efficiency	up to 3 months analyzed	stays episomal	no

Gene addition via rAAVs in retinitis pigmentosa/LCA2 patients

The New England Journal of Medicine, 2008 Brief repor

Safety and Efficacy of Gene Transfer for Leber's Congenital Amaurosis Albert M. Maguire Jean Bennett, Philadelphia, U.S.A.

> The New England Journal of Medicine, 2008 Brief report

Effect of Gene Therapy on Visual Function in Leber's Congenital Amaurosis James W. B. Bainbridge Robin R. Ali, London, England

Human Gene Therapy, 2008

Phase I Trial of Leber Congenital Amaurosis due to RPE65 Mutations by Ocular Subretinal Injection of Adeno-Associated Virus Gene Vector: Short-Term Results William W. Hauswirth...... Samuel G. Jacobson, Florida and Pennsylvania, U. S. A

Gene addition projects for USH genes USH1B (myosinVIIa) - Consortium - Welp/Brown families David Williams, San LA, U.S.A. - Lentivirus successful transfer into mouse RPE Alberto Aurichio, Univ. of Naples, Italy - recombinant adeno-associated virus (modified rAVV5) USH1C (harmonin) - Consortium planned Suchert family Uwe Wolfrum, Mainz,* Germany; - recombinant adeno-associated virus (rAVV5); PEG nanoparticle

USH2A - Consortium ?

W. Kimberling, Omaha, Peter Francis, Portland, U.S.A.* ...

USH3A (clarin-1) - Consortium - Alexander family - "Hope for Vision" John Flannery, Berkeley, U.S.A.*; Eeva-Marja Sankila, Helsinki, Finland; Kris Palczewski, Cleveland; David A. Saperstein, Seattle, U.S.A.

/QLT Inc., Vancouver, Canada ... recombinant adeno-associated virus (rAVV5)

*Cooperation with W.W. Hauswirth, Gainesville, U.S.A.

