Overview

• Childhood hearing loss
 – Review of auditory system
 – How we measure hearing
 – Medical evaluation

• Usher Syndrome and hearing loss
 – Classification
 – Genetic causes
 – Treatment
How the ear functions – microscopically
How the ear functions – hair cells
Milestones in diagnosis of childhood hearing loss

• **1960’s** Auditory brainstem response testing
• **1980s** Automated auditory testing
 – ABR and EOAE
• **1999** Walsh Bill
• **2000’s** Early Hearing loss Detection and Intervention (EHDI)
 – Screening by 1 month
 – Diagnosis by 3 months
 – Intervention by 6 months
How we measure hearing

<table>
<thead>
<tr>
<th>Type of test</th>
<th>Requirements</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiologic tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABR, BSER, BAER</td>
<td>Sleep or quiet</td>
<td>- Ear specific responses</td>
<td>- Requires sedation over 6 months of age</td>
</tr>
<tr>
<td>EOAE</td>
<td></td>
<td>- Does not require patient cooperation</td>
<td>- Physiologic response</td>
</tr>
</tbody>
</table>
How we measure hearing

<table>
<thead>
<tr>
<th>Type of test</th>
<th>Requirements</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiologic tests</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| ABR, BSER, BAER | Sleep or quiet| - Ear specific responses
- Does not require patient cooperation
- Correlates well with behavioral responses | - Requires sedation over 6 months of age
- Physiologic response |
| EOAE | | | |
| Behavioral | | | |
| VRA-visual reinforced| >6 months old Cooperative | Gold standard for assessment of hearing | Patient must be developmentally ready |
| CPA-conditioned play| | | |
| CA-conventional | | | |
Audiograms 101

NORMAL
MILD
MODERATE
SEVERE
PROFOUND
Medical evaluation of childhood hearing loss

• History
• Physical examination
• Characterization of hearing loss
• Imaging studies
 – CT and/or MRI scans
• Tests for causes of hearing loss
 – CMV testing
 – Genetic tests
Medical evaluation of childhood hearing loss

- Tests to look for associated problems
 - Balance testing
 - Ophthalmologic evaluation
 - Electrocardiogram
 - Renal ultrasound
 - Thyroid function studies
 - Electroretinogram
 - Others
CT scans

- Normal
- Mondini
- Normal
- Large vestibular aqueduct
Evaluation of children with hearing loss

- CMV testing
 - Infants
 - Need to get specimen from first 3 wks of life

- Genetic testing
 - Single mutation analysis
 - Next Gen Sequencing
Management of children with hearing loss

Exposure to language

Early intervention

Amplification
 Hearing aids
 Cochlear implants
 FM systems

School accommodations
Childhood Hearing Loss

Prelingual Deaf Children 1/1000

- Idiopathic 25%
- Non-genetic 25%
- Genetic 50%

Non-syndromic 70%

- Autosomal recessive 75% - 85%
 - DFNB1 50%
 - Other DFNB 50%
- Autosomal dominant 15% - 24%
- X-linked 1% - 2%

Syndromic 30%

From www.genetests.org
Hearing loss and Usher syndrome

• CHILDHOOD HEARING LOSS IN USA
 – 1-3/1000 newborns have severe to profound HL
 – 2-5/1000 newborns have milder degrees of HL
 – Over 95% of children with hearing loss have parents with normal hearing.
Hearing loss and Usher syndrome

- **USHER SYNDROME ACCOUNTS FOR**
 - About 1:25,000 in USA
 - 3-6% of children with hearing loss in USA*
 - 50% of people with deaf-blindness in USA
 - Most common recessively inherited form of syndromic hearing loss
Diagnosis of Usher syndrome

- Family history
- Congenital bilateral profound hearing loss and bilateral vestibular areflexia (US 1)
- Retinitis pigmentosa
- Clinical presentation
Diagnosis of Usher Syndrome

• Genetic testing (11 loci on 9 different genes)
 – Otochip
 – Otoscope

• Other tests: vestibular testing and ERG
Hearing loss and Usher Syndrome

<table>
<thead>
<tr>
<th>US Type</th>
<th>Hearing</th>
<th>Balance</th>
<th>Vision</th>
<th>Genes*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>Congenital Bilateral Profound</td>
<td>Congenital Bilateral Areflexia</td>
<td>RP Progressive loss</td>
<td>MYO7A, CDH23, PCDH15, USH1C, USH1G</td>
</tr>
<tr>
<td>B,C,D,E,F,G,H,J,K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type II</td>
<td>Congenital Bilateral Moderate to severe</td>
<td>Normal</td>
<td>RP Adolescent to adult onset</td>
<td>USH2A, GPR98, DFN31</td>
</tr>
<tr>
<td>Type III</td>
<td>Postlingual Bilateral Progressive</td>
<td>Variable Progressive</td>
<td>RP Late onset</td>
<td>CLRN1</td>
</tr>
</tbody>
</table>
Hearing loss and Usher Syndrome

<table>
<thead>
<tr>
<th>US Type</th>
<th>Hearing</th>
<th>Balance</th>
<th>Vision</th>
<th>Genes*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type II</td>
<td>Congenital Bilateral Moderate to severe</td>
<td>Normal</td>
<td>RP Adolescent to adult onset</td>
<td>USH2A, GPR98, DFN3B31</td>
</tr>
<tr>
<td>Type III</td>
<td>Postlingual Bilateral Progressive</td>
<td>Variable Progressive</td>
<td>RP Late onset</td>
<td>CLRN1</td>
</tr>
</tbody>
</table>
Hearing loss and Usher Syndrome

<table>
<thead>
<tr>
<th>US Type</th>
<th>Hearing</th>
<th>Balance</th>
<th>Vision</th>
<th>Genes*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>Congenital Bilateral Profound</td>
<td>Congenital Bilateral Areflexia</td>
<td>RP Progressive loss</td>
<td>MYO7A, CDH23, PCDH15, USH1C, USH1G</td>
</tr>
<tr>
<td>B,C,D,E,F,G,H,J,K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type II</td>
<td>Congenital Bilateral Moderate to severe</td>
<td>Normal</td>
<td>RP Adolescent to adult onset</td>
<td>USH2A, GPR98, DFN31</td>
</tr>
<tr>
<td>Type III</td>
<td>Postlingual Bilateral Progressive</td>
<td>Variable Progressive</td>
<td>RP Late onset</td>
<td>CLRN1</td>
</tr>
</tbody>
</table>

* All these genes have also been described with nonsyndromic HL
<table>
<thead>
<tr>
<th>Disorder</th>
<th>Mode of Inheritance</th>
<th>Gene(s)</th>
<th>Cost</th>
<th>Estimated Turnaround</th>
<th>Methodology</th>
<th>CPT Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usher Syndrome</td>
<td>Autosomal Recessive</td>
<td>CDH23, CLRN1, MYO7A, PCDH15, USH1C, USH1G & USH2A</td>
<td>First Tier Testing $575</td>
<td>8-10 weeks</td>
<td>Allele-Specific Testing Followed by Conventional Sequencing</td>
<td>81400, 81407, 81408, 81479</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ABHD12, CDH23, CIB2, CLRN1, DFNB31, GPR98, HARS, MYO7A, PCDH15, USH1C, USH1G & USH2A</td>
<td>Second Allele Testing $575-$1,626</td>
<td>10-12 weeks</td>
<td>Conventional Sequencing</td>
<td>81400, 81407, 81408, 81479</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exome Testing $2200</td>
<td>14-16 weeks</td>
<td>Allele-Specific Testing Followed by Conventional Sequencing and Next Generation Sequencing</td>
<td>81400, 81407, 81408, 81479</td>
</tr>
</tbody>
</table>
Treatment for Usher syndrome

• EXPOSURE TO LANGUAGE
• Early intervention
• Support for vision impairment
• Psychosocial support
• Exposure to spoken language
 – Amplification
 – Cochlear implantation
Cochlear implantation

- Indications/guidelines
 - No significant speech benefit from appropriately fit hearing aids
 - 12 months of age
 - Absence of medical contraindications
Cochlear implantation

- Emerging trends in CI
 - Earlier age
 - Lesser degrees of HL
 - Hearing preservation surgery
Hearing loss and US1

PROFOUND
Aided hearing and US1

SEVERE

PROFOUND
CI responses and US 1

- NORMAL
- MILD
- MODERATE
- SEVERE
- PROFOUND
Usher syndrome and hearing loss

• Genetic therapies for US hearing loss are not yet available for humans.

• Understanding the molecular mechanisms of hearing loss will pave the way for biologic interventions.
On the horizon…

- Usher Type 3
 - Mutation affects production of clarin-1
 - Abnormal protein does not reach cell membrane
 - Abnormal protein degraded
 - Research group aimed to stabilize clarin-1
 - Compound BF844

Summary

• Identification of Usher Syndrome in children with hearing loss:
 – Diagnosis is based upon clinical findings.
 – Genetic testing has an important role.
 – Work with hearing health care team.
 – Early diagnosis will be important.

• Treatment options will improve with our understanding of molecular mechanisms of hearing loss.
Questions?

kathysie@uw.edu